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GeForce3:  Lightspeed Memory Architecture 
Creating a real-time realistic 3D environment on a mainstream PC is the driving ambition of thousands of 
hardware and software developers employed in the computer graphics industry. While developments over 
the past years have made incredible strides towards improving the quality of real-time 3D graphics, one of 
the fundamental challenges in delivering interactive 3D content remains:  increasing performance given 
limited increases in memory.  Memory and graphics bus bandwidth remain as critical factors in determining 
graphics performance and quality.  GeForce3 incorporates a number of revolutionary advances in graphics 
architecture that dramatically improve the GPU’s efficiency with memory and bus bandwidth delivering a 
new level of performance and image quality. 

Bandwidth Challenges 
Real-time 3D graphics place a tremendous load on the entire PC architecture.  The nature of the 
graphics problem places strain on all aspects of a PC’s subsystems:  the microprocessor, main 
memory, the graphics bus (typically AGP), the graphics processing unit (GPU) and the GPU’s frame 
buffer memory.  Different components of a graphics application stress various components, which 
often results in the performance of a specific application limited by one system component at a given 
instant in time and a different component a fraction of a second later.  The three key stressors of a 
system are computational load, geometry computation, and pixel rendering.   

 
The 3D Graphics Problem 
Understanding how graphics applications work is key to understanding the various challenges in 
improving graphics performance and bandwidth efficiency.  A typical graphics application such as an 
interactive video game has four main components:  game logic, scene management, geometry 
calculations, and pixel rendering.  Each one of these is discussed below. 

Game Logic 
Compelling, interactive 3D applications require several elements to keep users interested and 
entertained.  Game logic, physics, artificial intelligence (AI), networking, interactivity, sound, and other 
non-graphics functions are some examples, and are all elements, of the primary game engine code.  
The key to great content is delivering an engaging interactive experience.  In order to create this 
experience, developers will allocate a majority of the central processing unit’s processing power to 
tasks that directly create these elements of the user experience.  To the extent that other aspects of 
the graphics application can be offloaded from the CPU, more CPU power can be dedicated to those 
elements.  With today’s modern GPU’s, (like the GeForce2 GTS and GeForce3) much of the graphics 
“problem” is offloaded from the CPU, leaving more of the CPU to create compelling interactive 
experiences. 

Scene Management 
In order for graphics to be interactively rendered, a database describing the “3D world” and every 
single object in that world must be created.  Typically these databases are very large, sometimes 
containing hundreds of megabytes, or even gigabytes of data.  Rendering and displaying all of this 
data is simply not practical, even on high-end multiprocessing graphics supercomputers, so this task 
must be simplified. The graphics application must calculate what portion of the “world” or database is 
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going to be processed, or rendered, at a given time.  This process of calculating what portion of the 
database will be rendered at a time is commonly called scene management.  A variety of techniques 
are typically used, all of which require tradeoffs between computational cost, memory requirement, and 
accuracy.  Algorithms that minimize the amount of scene data required to render a frame exist, but are 
typically too computationally expensive for practical use.  Hence, most graphics processors actually 
end up processing many times the amount of data than is actually displayed on the computer screen.  
Increasing the efficiency of the scene management processing can improve the performance of some 
graphics processors, but often comes at the cost of increasing the CPU load for these functions, which 
can detract from the processing power available for the game logic. 

Geometry Calculations 
Once the application calculates what portion of the scene to process (or render), the application passes 
that subset of its database to the geometry pipeline of the graphics application.  Historically the 
geometry processing of graphics applications took place on the CPU as well.  These computations 
typically involved transforming the geometry and lighting it.  These calculations have recently been 
handed over to modern graphics processing units, beginning with NVIDIA’s groundbreaking GeForce 
256 and continuing with subsequent NVIDIA processors.  By offloading the geometry burden from the 
host processor, more of the CPU is made available for game logic.  Simultaneously, modern GPUs 
such as NVIDIA’s GeForce family of graphics processors, can process many times the geometry data 
of even the fastest CPUs.  By processing more geometry data, visual quality can be dramatically 
improved. 

 

The Geometry Bandwidth Problem 
In order to describe scenes with richness and enough detail to create a compelling environment, 
content developers have been increasing the geometric detail in their scenes at an incredible rate.  
With the introduction of the GeForce 256 graphics processing unit, much of the computational load for 
this function was moved from the CPU to the GPU.  This shifting of the computational load to the GPU 
was a key factor in allowing content developers the freedom to move from hundreds of polygons per 
frame to hundreds of thousands.  These rich scenes, while orders of magnitude more visually 
compelling, are also incredibly bandwidth intensive.  With a typical scene of 100,000 polygons, each 
composed of three vertices, 300,000 vertices per frame is common.  Each vertex can typically contain 
50 bytes or more of information, for things like color, position, lighting, texturing, and shading 
information.  Hence, it is common for each frame to contain 15 Mbytes of geometric information.  
While an individual frame certainly would not stress even a basic PC system’s bus, the requirement to 
run this type of load at 60 frames per second makes this challenge daunting, as the 900 Mbytes/sec of 
bandwidth required for such a task will push every aspect of the PC to its limits. 

One challenge facing today’s PC architectures with these types of loads is the communication between 
the host CPU, and today’s GPUs.  The link between those two systems is commonly Intel’s AGP, or 
accelerated graphics port.  PCI (peripheral component interconnect) is the second most common. The 
most advanced implementation of AGP today is AGP 4x.  The AGP specification calls for a point-to-
point connection between the host and the graphics processor; hence this interface is not shared with 
other devices.  While a private interface certainly helps to address the issue of bandwidth between the 
two systems, even the 1.0GB/sec of bandwidth offered by AGP 4x is not sufficient for geometry-rich 
scenes. 



 

 
NVIDIA Corporation Confidential       | 3 

 

NVIDIA has developed several unique solutions to address this geometry bandwidth problem.  The first 
is high order surfaces. 

Higher Order Surfaces  
Traditionally the fundamental building block of real-time 3D graphics has been triangles.  Artists used 
collections of triangles, each built from three vertices (the corners of triangles), in order to build 3D 
objects.  The challenge with this approach is that in order to create objects with rich detail, or smooth 
curves, the artist is forced to use an ever increasing number of triangles to get the fine levels of detail, 
or to get curved edges to appear smooth. 

Higher order surfaces allow developers to create objects using curves defined by control points.  A 
curve or surface defined with a set of 
control points is called a spline.  While 
there are a number of different types of 
splines, the important thing is that by 
using a spline and a few control points, 
you can create fairly complex, smooth 
curved surfaces.  Joining splines together 
allows a designer to create complex 
curved surfaces that are difficult to create 

by just using triangles. 

GeForce3 supports these curved surfaces 
in hardware, allowing for a much more efficient description of complex geometry without an every 
increasing number of triangles.  By describing surfaces with control vertices, effectively the surface is 
being described by a formula, instead of thousands or millions of discreet values.  The GeForce3 
graphics processor is capable 
of processing these high order 
surfaces in hardware and in 
real time, essentially accepting 
these small, highly efficient 
formulas describing the 
geometry from the AGP bus, 
and then processing those 
formulas to “create” the 
geometry on the graphics 
processor.   

 

The benefits of high order 
surfaces are clear.  Much 
higher quality scenes, 
particularly scenes requiring 
smooth curves (such as columns to support the roof of a temple), and much more efficient use of the 
graphics bus.  By transmitting only 16 control points, the GeForce3 graphics processor is able to 

Complex object created using higher order surfaces. 
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generate the equivalent of hundreds of thousands of polygons worth of geometric data, effectively 
offering hundreds, or even thousands of times the efficiency of transmitting that triangular geometry 
data across the bus.  The result.  Better performance more of the time. 

 

The Pixel Bandwidth Problem 
To fully grasp the challenges of rendering a realistic 3D world requires an understanding of some basic 
3D graphics concepts and terminology. A reference of useful terms can be found in the appendix at the 
end of this paper. 

Calculating Pixel Memory Bandwidth 
Traditional graphics architectures render pixels by reading from and writing to color and Z-buffers, and 
accessing texture data.  They do this for every pixel they render, regardless of the pixel’s visibility.  
Most graphics applications today actually render each pixel two to three times per frame, as objects 
often “occlude” or hide, other objects.  A simple example would be a game with a background and a 
character in the foreground.  Taken in its most basic form, such a scene would have a depth 
complexity of two, with the pixels of the background being hidden by the character in the foreground. 

Rendering a single pixel once requires the graphics processor to read the color buffer, to discover the 
previous value, to read the Z-value to determine the depth in the scene for the pixel, and to read the 
texture data necessary to texture map that pixel.  Once the pixel is generated it requires writing the 
new (potentially blended) color value to the color buffer, and potentially writing the new Z-buffer value.  
In the 32-bit depth rendering case, each of these operations requires 32-bits, or 4-bytes of data per 
access.  So: 

Color Read + Z-Read  + Texture Read  + Color Write  + Z-Write 

4 bytes + 4 bytes + 4 bytes + 4 bytes + 4 bytes = 20 bytes 

This calculation assumes that the graphics processor is fetching one 32-bit texel per pixel, which 
makes the assumption that the remainder of texels (necessary to perform bilinear filtering) are already 
resident on-chip in the texture cache.  20 bytes may not seem like a lot of data, but when the complete 
frame is rendered 2.5 times per pixel (the average depth complexity) a more bandwidth intensive 
picture begins to emerge.  Assume a resolution of 1024 pixels by 768 pixels. 

Horizontal Resolution  x Vertical Resolution  x Depth Complexity  x 20 bytes/pixel 

1024   x 768   x 2.5   x 20 = 39,321,600 
bytes/frame 

39.3Mbytes per frame  x 60 frames per second = 2.4GB/sec 

Rendering higher resolutions, higher frame rates, or higher depth complexity can have a dramatic 
impact on memory bandwidth requirements.  Moving the resolution up to 1600 x 1200 pixels: 

Horizontal Resolution  x Vertical Resolution  x Depth Complexity  x 20 bytes/pixel 
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1600   x 1200   x 2.5   x 20 = 96,000,000 
bytes/frame 

96Mbytes per frame  x 60 frames per second = 5.8GB/sec 

Such tremendous amounts of memory bandwidth can only be accomplished with wide memory 
systems (128-bits) and high-speed memories.  Today, typically double data rate, or DDR, memory is 
used.  Even with such advanced memory subsystems, frame buffer bandwidth is one of the key 
limiters to increasing the resolution and/or frame rate of graphics applications.  By increasing the 
efficiency in which the graphics processor renders pixels, dramatic improvements in performance can 
be achieved without increasing the memory bandwidth of the frame buffer.  By improving the speed of 
the frame buffer (and hence memory bandwidth) and improving the efficiency in which pixels are 
rendered, dramatic breakthroughs in performance and visual quality become possible.  GeForce3 
implements both techniques to deliver such a breakthrough. 

GeForce3 Pixel Memory Bandwidth Breakthrough 
GeForce3 implements many patent pending technologies to improve the efficiency at which it renders 
pixels.  Three of these key technologies are a crossbar-based memory controller to improve the 
efficiency of access to the frame buffer, lossless Z-buffer compression, and Z-Occlusion Culling to 
reduce the drawn depth complexity, and thus reduce the number of pixels that must actually read from 
and write to the frame buffer. 

Crossbar Memory Controller 
The memory controller is perhaps one of the most critical components of any graphics system.  
Because 3D graphics is so dependent upon memory bandwidth, the memory controller is at the crux of 
the bottleneck for improving performance.  Besides the GPU, the other major component of a graphics 
system is the frame buffer.  The frame buffer, which is the memory attached directly to the graphics 
processor, holds information such as color, depth values, textures and geometry, and is typically the 
highest bandwidth memory system in a personal computer.  Unfortunately it is the most expensive part 
of a typical graphics system, often accounting for 50% of the cost of the product or more.  Hence, it is 
critical to make the most efficient use of this expensive resource that is possible. 

Traditional memory controllers have reached the point where they are reasonably efficient with basic 
loads, getting greater than 50% of the peak memory bandwidth from the frame buffer under most 
conditions.  In today’s double data rate (DDR) based designs, a typical 128-bit memory controller will 
actually access information in 256-bit “chunks”.  (Since DDR transfers twice the information in a single 
access)  While it would seem that transferring large amounts of data in large blocks is generally 
optimal, in fact, with complex scenes with hundreds of thousands of polygons per frame, the reality is 
actually quite different. 

Under conditions common in the latest generation of interactive content the size of the average 
triangle (again, the fundamental building block of all real-time graphics) can be very small, sometimes 
only a few pixels.  If a triangle is perhaps 2 pixels in size, and is composed of 32-bits of color or Z for 
each pixel, the total amount of data for that triangle would be 32-bits x 2 pixels, or 64 bits.  If memory 
controllers access information only in 256-bit “chunks” then much of this access would be wasted, as 
this “payload” or amount of data being transferred would essentially waste much of the frame buffer’s 
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potential bandwidth.  In this example, a traditional 128-bit memory controller would be only 25% 
efficient, “wasting” 75% of the memory bandwidth. 

GeForce3 implements a radical crossbar memory controller that is optimized for accessing the frame 
buffer with a fine granularity access pattern, with up to 64-bits of individual access, ensuring that each 
individual access is completely efficient, thus ensuring that no fraction of the frame buffer’s bandwidth 
is wasted.  While the memory controller itself is still capable of accessing 256-bits of information in an 
individual clock cycle, the efficiency of each of those accesses is nearly perfect, keeping all aspects of 
the graphics processor and it’s frame buffer fully utilized for maximum performance.   

It does this by effectively implementing 
four independent memory controllers, 
each of which communicate with each 
other and the rest of the graphics 
processor.  This complex system 
continuously load balances itself to 
ensure that every aspect of the memory 
system is balanced and that all memory 
requests by the graphics processor are 
handled properly.  Under complex loads, 
typical of next generation content, the 
GeForce3 crossbar memory controller 
can be up to four times as efficient as 
previous less intelligent designs. 

 
 
 

 
Lossless Z Compression 
The Z-Buffer represents the depth, or visibility information for the pixels ultimately to be displayed after 
being rendered.  Traditional graphics processors read and potentially write Z data for every pixel they 
render, making Z-buffer traffic one of the largest “consumers” of memory bandwidth in a graphics 
system.  By implementing an advanced form of 4:1 lossless data compression the memory bandwidth 
consumed by Z-buffer traffic is reduced by a factor of four.  This Z compression is implemented in 
hardware transparently to applications, with both compression and decompression taking place in real 
time by the Lightspeed Memory Architecture’s Z compression/decompression engines.  Because this 
compression is completely lossless there is no reduction in image quality or precision.  The result of 
this technology is dramatically more efficient use of memory bandwidth for dramatically improved 
performance with no compromise in image quality. 

 
Visibility Subsystem: Z-Occlusion Culling 
As previously discussed, traditional graphics architectures render every pixel of every triangle as it 
receives them, accessing the frame buffer with each pixel to determine the appropriate values for the 
color and Z (or depth) for each of those pixels.  This method produces correct results, but requires all 
of the pixels to be rendered, regardless of their visibility or not.  Typical content today has an average 
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depth complexity of 2, which means that for every pixel that ends up being visible, two pixels have to 
be rendered (on average) to come up with that result.  This means that for every visible pixel, the 
graphics processor is forced to access the frame buffer twice, spending valuable frame buffer 
bandwidth essentially rendering pixels that the viewer will never see. 

GeForce3 implements a sophisticated Z-Occlusion Culling technology, whereby it attempts to 
determine early if a pixel is going to end up being visible.  If a pixel is going to be occluded and the Z-
Occlusion Culling unit determines this, the pixel is not rendered, the frame buffer is not accessed, and 
the frame buffer bandwidth is saved.  Depending on the depth complexity of the scene this can mean 
tremendous improvements in efficiency.  With today’s content, averaging a depth complexity of 
approximately 2, this technique could reduce bandwidth requirements by 50%.  With next generation 
content approaching depth complexities of 4 or more, the benefits can be tremendous, with up to a 
four times improvement in memory bandwidth efficiency. 

An additional technique, which developers can employ, is an “Occlusion Query”.  Essentially, the 
application makes a request of the graphics processor to render a bounding box or region to test for 
visibility.  If the GPU determines that the region is going to be occluded, then all the representative 
geometry and rendering representing that region can be skipped over, potentially offering an order of 
magnitude increase in fill rate, as characters behind walls, or scenery outside of a tunnel can simply be 
“occlusion queried” and skipped over, without spending precious memory bandwidth or GPU 
processing time to render them. 

These two key technologies effectively amplify the bandwidth of an GeForce3 graphics processor, both 
by getting dramatically more efficiency from the memory bandwidth offered by the frame buffer, and 
by making more efficient use of the frame buffer by avoiding having to access it for pixels that would 
not be visible.  In some cases each of these benefits can demonstrate as much as four times the 
performance of previous architectures, while in practice the typical benefit of these memory bandwidth 
amplification technologies averages a 50%-100% improvement. 

GeForce 3 Lightspeed Memory Architecture 
GeForce 3 brings an array of technology to bear on the challenge of memory bandwidth.  By 
representing complex geometry as a high order surface and performing those surface calculations 
entirely on the GPU, GeForce3 is able to avoid transmitting tremendous amounts of triangle data 
across the AGP bus, ensuring that communication between the host and the GPU can continue in an 
efficient and high performance manner.  By attacking the pixel bandwidth problems in a variety of 
ways, GeForce3 brings a tremendous leap in memory bandwidth efficiency to PC graphics.  The 
combination of the most efficient and sophisticated crossbar-based memory controller ever built for PC 
graphics, advanced lossless Z compression for reduced bandwidth consumption, and a highly 
advanced Z-Occlusion Culling method to avoid rendering and spending bandwidth on non-visible 
pixels means that GeForce3 makes twice the use of memory bandwidth than any previous traditional 
architecture. 

These advances pave the way for an increasingly dynamic and visually rich real time 3D graphics 
experience.  By improving the efficiency of communication between the host and graphics content 
developers can continue to increase the geometric richness and visual complexity of their scenes to 
new levels, unbound by the limits of the AGP bus.  Rendering at high resolutions, with high frame rates 
becomes the standard with GeForce3, as its advances in pixel rendering and memory efficiency mean 
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that frame buffer bandwidth boundaries have been broken, paving the way for the first time for high 
resolution, 32-bit rendering without substantial performance penalties.  

 

Appendix 
Resolution 
Resolution is the number of pixels on a screen. Higher resolutions can create a more realistic 3D 
environment because more scene detail can be displayed. Most modern displays are capable of at 
least 1280 horizontal pixels by 1024 vertical pixels, while many larger or more expensive displays are 
capable of 1600x1200 or even 2048x1536 pixels.  Most graphics applications support a variety of 
resolutions, allowing the end user to run at higher resolution (and hence higher level of detail) with the 
tradeoff being increased load on the graphics processing system. 

Bit Depth 
The bit depth refers to the number of bits of precision for the color and Z-values associated with each 
pixel on the screen.  More bits of precision improve the visual realism and accuracy of the rendered 
frame.  The two most common bit depths in modern graphics hardware are 16-bits and 32-bits.  Each 
of these values can be associated with color or Z-values.  32-bit color (for example) typically is used to 
represent red, green, blue and alpha (or transparency) values with up to 8-bits per component, or 256 
“values” for each of those components.  A 32-bit Z-value is typically allocated as 24-bits of Z precision 
(or depth precision) and 8-bits of stencil or “mask” precision. 

Frames per Second 
Frames per second (fps), or frame rate, refers to how many times per second the scene is updated by 
the graphics processor. Higher frame rates yield smoother, more realistic animation. It is generally 
accepted that 30 fps provides an acceptable level of animation, but increasing the performance to 60 
fps results in significantly improved interaction and realism. Beyond 75 fps it is difficult to detect any 
performance improvement. Displaying images faster than the refresh rate of the monitor results in 
wasted graphics computing power, as the monitor is unable to update it’s phosphors (or display) that 
fast, essentially wasting frame rate beyond its refresh rate. 

Depth Complexity 
Depth complexity is a measure of the complexity of a scene. It refers to the number of times any given 
pixel must be rendered before the frame is done. For example, a rendered image of a wall has a depth 
complexity of one. An image of a person standing in front of a wall has a depth complexity of two. An 
image of a dog behind the person but in front of the wall has a depth complexity of three, and so on. 
As depth complexity increases, more rendering horsepower and bandwidth is needed to render each 
pixel or scene. The average depth complexity of today’s graphics applications is two to three, meaning 
that for every pixel you end up seeing, it gets rendered two or three times by the graphics processor. 

Texture Mapping 
Texture mapping is the technique of projecting a 2D image (typically a bitmap) onto a 3D object. 
Texture mapping allows substantial increases in visual detail without significant increases in polygon 
count. Because of the improved realism that can be obtained with a very small increase in 
computational cost, texture mapping is one of the most common techniques for displaying realistic 3D 
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objects.  In order to render a texture-mapped pixel, the texture data for that pixel needs to be read into 
the graphics processor, consuming memory bandwidth. 

Fill Rate 
Fill rate is the rate at which pixels are drawn into the screen memory. Fill rate is a common measure 
used to illustrate the pixel processing capabilities of today’s 3D graphics processors. Fill rate is usually 
measured in millions of pixels/second (Mpixels/sec). In 1997, 50-70 Mpixels/sec was considered state-
of-the-art. In 2001, the leading 3D graphics processors will be capable of 800-1000 Mpixels/sec. While 
this improvement is an incredible achievement, it is barely enough to create a compelling 3D 
environment.  Rendering pixels at such a high rate can consume enormous amounts of memory 
bandwidth. 

Memory Bandwidth 
Memory bandwidth refers to the rate at which data is transferred between the graphics processor and 
graphics memory. Memory bandwidth limitations are one of the key bottlenecks that must be 
overcome to deliver truly realistic 3D environments. To deliver truly stunning 3D requires high 
resolution, 32-bit color depth at high frame rates, with rich geometry, sophisticated texture mapping, 
and complex vertex and pixel shading. 

 


