Configuring the Z97 Classified BIOS

This supplementary manual explains the different menus and selections within the BIOS and provides a description of the different options enabling you to configure the Z97 Classified BIOS for your needs.

- 1. Entering BIOS 2
- 2. Header and Margin Information 3
- 3. Overclock 6
- 4. Memory 11
- 5. Advanced 13
- 6. Boot 30
- 7. Save and Exit 36

Enter the BIOS

The Z97 Classified features a UEFI BIOS, allowing for full mouse and keyboard support to streamline configuration. The BIOS enables you to use the base configuration of the motherboard to set preferences for features and configure the board to perform optimally.

Follow the basic steps below to enter your BIOS.

- 1. Power on the computer
- 2. Press the Del / Delete key when the message "Press Del to enter BIOS" appears on screen.
 - a. In some instances, the Z97 Classified can complete the POST sequence before the video card fully initializes and prevent you from seeing the POST screen and the prompt for entering the BIOS, which may cause you to miss the opportunity to enter the BIOS. In these instances, please repeatedly press the Del/Delete button for a few seconds following the power on.

The Z97 Classified has 3 separate BIOS's, toggled via the BIOS select switch. EVGA STRONGLY recommends that you leave at least one BIOS unmodified to ensure that you have a failsafe point that allows you to boot is an error occurs.

Header and Margin

The header and right margin are permanent fixtures in the BIOS. The header gives a general overview of hardware installed, basic temperatures and voltages.

In the center above the EVGA logo, is basic CPU information. There is the overall CPU clock speed shown in GHz (Gigahertz). Above that the CPU Multiplier times Base Clock (BCLK) which is how clock speed is derived. Adjacent to the CPU Clock there is a small outline of a chip and a number inside of it, the number in this case 4, is the number of physical cores in the CPU. HT indicates that Hyper Threading is enabled.

On the left, basic memory information is displayed at the top. The 8 small blue circles above "Memory" represents the memory slots. The number in the circle indicates the memory size per slot. If there is no number present, then that specific slot is not populated, or perhaps the DIMM present may be malfunctioning or incorrectly installed.

Below "MEMORY" is the total RAM size and the memory frequency. The Z97 Classified can support up to 32GB of RAM, and speeds up to 2666+MHz. Current Haswell processors are rated for up to 1600 MHz. Most memory will default to 1333 MHz and this will need to be set manually to the manufacturers spec or to XMP if the memory supports it. Although this board is rated for 2666+MHz, there are many factors that can limit your overclocking ability such as memory controller in the CPU, among others.

Bottom left section shows current voltages for Processor (CPU VCore) and the Memory (VDIMM).

The PCI-Express Breakdown is on the upper right. From the center out is the uppermost PCI-E slot to the lower slots. The lower row of blue circles will show what PCIe generation the slot is running at. The PCIe generation options are 1.0 2.0 and 3.0. The upper circles indicate the PCIe lane count for the corresponding slot. PCIe lane count options are 1, 4, 8, or 16.

The VRM and CPU temperatures are located below the PCI-E information. These are the 2 most critical items on the motherboard requiring thermal monitoring. Keep in mind, however, that these temperatures are at idle and do not necessarily reflect the temperature you may see either in Windows or within an application under load. Temperatures are displayed in Celsius which is the industry standard.

Below the header are the 5 buttons that will bring you to specific BIOS menus and these will be covered in the sections below.

The right Margin is the help legend, and gives a brief description of the current item you have selected.

Auto:CPU will run automatically.
Manual:CPU will run manually.
F1 : General Help
F5 : Optimized Defaults
F7 : Save Profile
F8 : Load Profile
F10 : Save & Exit Setup
ESC/Right Click : Exit
T12 BIOS v1.02

The upper portion will give you a brief explanation of a selected item. Below that are the basic commands for the BIOS. The modern UEFI (Unified Extensible Firmware Interface) BIOS GUI also allows for full navigation via mouse or the arrow keys.

The lower portion of this section contains icons for saving screen shots of the BIOS and listing the current version of the BIOS. The F12 key can be used to save screen shots of the BIOS to a USB storage drive. To use this feature, a pre-formatted thumb drive must be plugged into one of the USB headers, then press F12 and a .bmp image will be saved to the thumb drives root folder, the file will be saved as a number, the breakdown is 2 digit year/ 2 digit month/ two digit day/ 6 digit time; leave you with a file name such as 140501083416, meaning 2014/May/1st/8:34:16. This may be used to easily share BIOS

configurations, or to visually back up settings prior to doing a BIOS update to quickly and easily set original values back into the BIOS after the flash is completed.

The BIOS version listed is the current version flashed of the ROM image, and will automatically update every time the new BIOS is flashed.

Reference for the different bullet points:

- Setting
- > Sub menu
- Preset Configurations (like XMP)

Overclock

UEFI			
VUERCLOCK	MEMORY & ADVANCED (BOOT G→ SAVE & EXIT	
Intel(R) Core(TM) 17-477	OK CPU @ 3.50GHz		
Target CPU Frequency		3500 MHz	
CPU Die Temperature		46/39/36/36 C	
CPU Overclocking			
CPU Multiplier Control		Auto	
Non Turbo Ratio Override		35	00
BCLK Overclocking			
BCLK Frequency Setting		100.00	90
PEG/DMI Ratio		Auto	
Voltage Control			
CPU Voltage Mode	1.020/1.013/1.013/1.013 V	Auto	
RING Voltage Mode	1.067 V	Auto	
VSA Offset Voltage	0.800 V	Auto	90
IOA Offset Voltage		Auto	90
IOD Offset Voltage	1.007 V	Auto	90
CPU VIN	1.773 V	Auto 🔮	90
CPU VIN VDroop		Auto	
PCH 1.05V	1.040 V	Auto 🔮	90
PCH 1.5V	1.528 V	Auto	
FIVR Faults Enable		Auto	
FIVR Efficiency Enable		Auto	

Intel(R) Core(TM) 17-4770K CPU @ 3.50GHz

- Target CPU Frequency This will show the CPU frequency on next reboot ((BCLK x BCLK Ratio)x CPU Multiplier))
- CPU Die Temperature This will show the temperature of each core.

CPU Overclocking

- CPU Multiplier Control
 - Auto/Manual

CPU Multiplier Control	Auto	
	Auto	
	Manual	

Auto – This will run the CPU at default multiplier, and its only variances will be done dynamically by Turbo Mode and Speed Step.

Manual – This give you multiplier control for all CPU ratios. The available range for multiplier is from 8-80x.

CPU Multiplier Control	Manual	
CPU Multiplier Setting	35	00
1 Core Ratio Limit	39	00
2 Core Ratio Limit	39	00
3 Core Ratio Limit	38	00
4 Core Ratio Limit	37	0 0
Non Turbo Ratio Override	35	00
RING Ratio	Auto	0 0

When under Manual, you will have 7 options to adjust your overclock with.

- CPU Multiplier Setting This will change the base multiplier for the CPU (ratio can be set according to utilization loading, see settings below)
- o 1 Core Ratio Limit Set the CPU multiplier setting for single threaded loading
- o 2 Core Ratio Limit Set the CPU multiplier setting for 2 threaded loading
- o 3 Core Ratio Limit Set the CPU multiplier setting for 3 threaded loading
- o 4 Core Ratio Limit Set the CPU multiplier setting for full CPU loading
- Non Turbo Ratio Override
- RING Ratio (currently limited to a range of 8-39)
- Non Turbo Ratio Override*

This value can be set separately when Multiplier control is still set to Auto.

That is the ratio the CPU will have if Turbo function is disabled. This is the highest tested stable CPU ratio (per Intel), also the ratio which is labeled on CPU package/box.

This also means that is a speed on which CPU will be working at worst case (TDP load, max power), unless thermal throttling protection kick in.

Having this setting is useful when pushing for high BCLK, as this is also usually speed on which BIOS is posting.

BCLK Overclocking

BCLK Frequency Setting

Base clock frequency adjustment, this can be adjusted in 0.05 MHz increments, this can be adjusted by clicking the +/- keys or by typing in the value directly.

Adjusting this value may result in connectivity loss from various installed peripherals or preattached components, as their interface speeds will change as well.

• PEG/DMI Ratio

AUTO 5/5 5/4 5/3 5/2

Ratio adjustment between PCIE strap and BCLK to allow for higher BVCLK speeds. It is usually recommended to leave this setting on AUTO.

Voltage Control

CPU Voltage Mode

Auto/Adaptive/Override

CPU Voltage Mode	1.0 10/1 .013/1.0 10 /1.013 V	Auto	
		Auto	
		Adaptive	
		Override	

Auto – Leaves voltage mode at BIOS default

Adaptive – Allows for manual changes in voltages but will still keep low voltage where there is less load. This is useful to keep better thermals, when high voltage not required. Override – Applies a static voltage

• RING Voltage Mode

Auto/Adaptive/Override

Auto – Leaves voltage mode at BIOS default

Adaptive – Allows for manual changes in voltages but will still keep low voltage where there is less load. This is useful to keep better thermals, when high voltage not required. Override – Applies a static voltage

• VSA Offset Voltage

Voltage System Agent

VSA Offset Voltage increases the voltage threshold of the CPU Integrated memory controller (IMC) and system control unit (SCU) voltage. High memory speeds over 2666 or BCLK overclocking may need increasing of this voltage. Auto will adjust voltage depending on memory frequency, or the values may be entered manually or scroll through the options with the +/- keys.

- IOA Offset Voltage
 - Input/Output Analog voltage

By increasing this voltage may help for overclocking memory/pushing BCLK. Some CPUs may be unstable if this voltage is set too low or too high.

• IOD Offset Voltage

Input/Output Digital voltage By increasing this voltage may help for overclocking memory/pushing BCLK. Some CPUs may be unstable if this voltage is set too low or too high.

CPU VIN

CPU Voltage Input

This is the only CPU VRM located on the motherboards PCB that is not controlled by the FIVR. This voltage must be at least 0.4-0.6V higher than set FIVR voltage. For example, if CPU Core voltage set to 1.5V for extreme OC, VIN voltage must be set at least 2.1V. Higher voltage cause higher temperatures for CPU, as efficiency is lower.

CPU VIN VDroop

Enable/Disable

This enables or disables Intel Spec VDroop functions for the CPU VIN. This may help to get better stability when overclocking over 4.5GHz.

• PCH 1.05V

Platform Controller Hub PCH serves as a south bridge for modern Intel Chipsets 1.05v is the base voltage core for the PCH core domain.

• PCH 1.5V

Platform Controller Hub PCH serves as a south bridge for modern Intel Chipsets 1.5v adjustments control the voltage for the PCH I/O and the IVR (Input Voltage Range).

- FIVR Faults Enable
 Fully Integrated Voltage Regulator
 Auto/Enable/Disable
 Intel FIVR power fault protection system. It is recommended to disable this protection mechanism when doing extreme overclocking.
- FIVR Efficiency Enable
 Fully Integrated Voltage Regulator
 Auto/Enable/Disable
 Efficiency optimized operation mode for Intel FIVR. This may cause instability during extreme overclocking.

Memory

UEFI					
VERCLOCK MEMORY	\$	ADVANCED	0 воот	SAVE & EX	(IT
Memory Information					
XMP#1 DDR3-2000 10-10-10-27-2N-1.50V					
XMP#2 Not Supported					
Memory Multiplier Configuration			*		
Performance Memory Profiles					
Memory Frequency Limiter		Auto			
DIMM Voltage	1.493 V	Auto	0 0		
Basic Timing Configuration		IOL RODO			
CHA	СНВ	R1D0			
tCL	9	R0D1			
tRCD	9	R1D1			
tRP	9	RTL RODO			0
tRAS	24	R1D0			0
tRRD	5	R0D1			40
tRTP	5	R1D1			0
tFAW	25	Third Timing	Configuration		
tWCL	7	THE C THEFT	CONTINUE OF CONTINUES	СНА	СНВ
tRC	34	TRRSR		Chin	6
Command Rate	1N				6
Second Timing Configuration					6
CHA	CHB	TWRSR			18
tWR	10	tWRDR			5
tRFC	107	tWRDD			5
tREFI	5200	tWWSR			4
tWTR	5	tWWDR			7
tCKE	4	tWWDD			7
RTL RODO		tRWSR			9
R1D0		tRWDR			9
R0D1		tRWDD			9
R1D1		tXPDLL			16
		tXP			5

Memory Information

This will show the XMP#1 and XMP#2 specs if supported, or state that it is not supported like it does above for XMP#2.

Memory Multiplier Configuration

• Performance Memory Profiles

Performance Memory Profiles	Automatic
	Automatic
	User Defined
	XMP Profile 1
	XMP Profile 2

Automatic – Will default to loose timings, and the default speed and voltage for the memory controller. In most instances that will be 1333MHz at 1.5 volts.

User Defined – This option allows you full control of your memory settings. It is recommended to manually set all settings to manufacturer default at first and test for stability, then adjust from there.

XMP Profile 1 – This will enable all settings hardcoded from your memory for Extreme Memory Profile 1 to the BIOS controls. If present, this is prebuilt into the memory from the memory manufacturer.

XMP Profile 2 - This will enable all settings hardcoded from your memory for Extreme Memory Profile 1 to the BIOS controls. If present, this is prebuilt into the memory from the memory manufacturer.

Memory Frequency Limiter

This option selects the upper limit of the memory speed.

The theoretical range of memory speed (not all memory kits, or all CPU's will be able to attain these values) is 800Mhz to 2933Mhz.

• DIMM Voltage

This setting allows you to enter a static memory voltage. It is recommended that you set the DIMM voltage to the manufacturer recommend specs and test before making further adjustments. You can also leave this value at Auto and the BIOS will attempt to set it correctly based off of the detected specs of the DIMM.

Basic Timing Configuration

This section will display the basic memory timing information. You can alter these settings by setting Performance Memory Profiles to "User Defined".

tCL, tRCD, tRP, tRAS are the latency settings listed on a typical stick of RAM in the hyphenated section (9-9-9-24, for example). Those numbers on the RAM are entered, usually in top to bottom order. There are many additional latencies available to adjust below these. However, these all involve memory controls and are not used in most cases. Because this is a dual channel board, you will see CHA-B; if memory is not present in a specific channel related values will be hidden.

Advanced

VERCLOCK MEMORY	ADVANCED	О воот	SAVE & EXIT
Graphics Configuration			
PCIe Configuration			
PCH Configuration			
SATA Configuration			
USB Configuration			
Onboard Device Configuration			
Power Management			
H/W Monitor Configuration			
GPU Link Configuration			

\triangleright			

EIST	Enabled	
Turbo Mode	Enabled	
CPU C states	Enabled	
Enhanced C1 state	Enabled	
CPU C3 Report	Enabled	
CPU C6 report	Disabled	
CPU C7 report	Disabled	
Hyper-threading	Enabled	
Intel(R) Virtualization Technology	Enabled	
Active Processor Cores	A11	

• EIST

Enhanced Intel Speedstep Technology Enable/Disable

This option allows the system to dynamically adjust processor voltage and core frequency, which can result in decreased average power consumption and decreased average heat production, based on level of processor load.

Turbo Mode
 Enable/Disable

This allows the CPU to dynamically adjust frequency to accommodate higher than average processor load to maintain peak performance. (In essence, low level overclocking built into the CPU).

• CPU C States

Enable/Disable

This can open the options to use C1 and C3.

Enhanced C1 State
 Enable/Disable
 Core clock is off. The processor is not executing instructions, but can return to an executing state almost instantaneously.

- o CPU C3 Report
 - Enable/Disable

Clock generator is off. The processor does not need to keep its cache coherent, but maintains other states.

- o CPU C6 report
 - Enable/Disable

Clock generator is off. The processor does not need to keep its cache coherent, but maintains other states.

o CPU C7 report

Enable/Disable

The processor enters the package C7 low power state when all cores are in the C7 state and the L3 cache is completely flushed. The last core to enter the C7 state begins to shrink the L3 cache until the entire L3 cache has been emptied. This allows for further power savings.

Hyper Threading

Enable/Disable

Hyper threading is processor core virtualization and functions as additional processing cores . Processor units which are not utilized are shared between two virtual threads to accept more parallel workload. This is also why a quad core processor shows up as 8 threads in Windows.

- Intel[®] Virtualization Technology
 - Enable/Disable

Hardware based virtualization built into the CPU, used in conjunction with virtualization software to create multiple virtual environments/ virtual PC's within a single PC.

Active Processor Cores

All/1/2/3

This setting allows the selection of the number of processor cores to enable and make available for use.

U Information	
Intel(R) Core(TM) i7–4770K CPU @ 3.50GHz	
CPU Signature	306c3
Microcode Patch	17
Stepping	CO
Max CPU Speed	3500 MHz
Min CPU Speed	800 MHz
CPU Speed	3700 MHz
Processor Cores	4Core(s) / 8Thread(s)
Intel HT Technology	Supported
Intel VT–x Technology	Supported
Intel SMX Technology	Not Supported
64-bit	Supported
EIST Technology	Supported
CPU C3 state	Supported
CPU C6 state	Supported
CPU C7 state	Supported
L1 Data Cache	32 KB x 4
L1 Code Cache	32 kB x 4
L2 Cache	256 kB x 4
L3 Cache	8192 kB

This section does not have any settings or adjustments whatsoever. This section provides a fairly in depth overview of the installed CPU, in the case of this test system, it is a 4770k, and shows its associated specs and what exactly it does and does not support.

Graphics Configuration	
Graphics Configuration	
Graphics Setting	
Primary Display	Auto
Internal Graphics	Auto

• Primary Display

Primary Display	Auto
	Auto
	IGFX
	PEG

Auto – Allows BIOS to activate the appropriate display IGFX – Integrated graphics on the CPU PEG – PCI-E graphics card

• Internal Graphics

Internal Graphics	Auto 📡 🔽
	Auto
	Disabled
	Enabled

Auto/Internal/Disable

This toggles the integrated video on the CPU to Enable/Disable or to a auto value where the BIOS will determine if it is needed.

// PCTe Configuration	
PE1 Slot	x4 Gen3
Speed	Auto
PE2 Slot	Not Present
Speed	Auto
PE3 Slot	Not Present
Speed	Auto
PE4 Slot	Not Present
Speed	Auto
PE5 Slot	Not Present
Speed	Auto
PE6 Slot	Not Present
Speed	Auto

This screen will give you a pre slot breakdown showing how many lanes are being used by a given slot as well as what generation the PCIE device is running.

PE1 Slot	x4 Gen3
Speed	Auto 📡
	Auto
	Gen1
	Gen2
	Gen3

If you click on the pulldown menu that currently lists auto, this will allow you to force a specific PCIE generation, in most cases Auto should suffice.

The top section is strictly informational, this shows the type of PCH (Platform Controller Hub, PCH has effectively replaced the South Bridge), PCH Revision ID and the ME (Management Engine) firmware revision, this is not something readily changeable by the user, however form time to time there may be an update to this as needed as part of a overall BIOS update.

• Intel[®] Rapid Start Technology

On/Off

Intel[®] Rapid Start Technology enables systems to quickly resume from deep sleep in about 6 seconds.

 Intel[®] Smart Connect Technology On/Off

While your computer is asleep, Intel Smart Connect Technology wakes the system periodically and re-establishes network connectivity. This enables your applications that receive data from the Internet and update.

Kata Configuration	
SATA Mode Selection	AHCI
SMART Self Test	Disabled
SATA Information	
Serial ATA Port O	Empty
Hot Plug	Enabled
Serial ATA Port 1	Empty
Hot Plug	Enabled
Serial ATA Port 2	Empty
Hot Plug	Enabled
Serial ATA Port 3	Empty
Hot Plug	Enabled
Serial ATA Port 4	Empty
Hot Plug	Enabled
Serial ATA Port 5	OCZ-VERTEX3 (120.0GB)
Hot Plug	Enabled

SATA Mode Selection

IDE/AHCI/RAIL

SATA Mode Selection	AHCI	
	IDE	
	AHCI	
	RAID	

IDE – Legacy Controller Mode, typically needed on modern SATA devices

AHCI – Advanced Host Controller Interface.

This setting offers features such as NCQ (Native Command Queuing) and Hotswap. Also required for an SSD to operate to its capabilities (RAID will also work for this).

RAID – Redundant Array if Inexpensive Disks

RAID is a means of combining multiple physical hard disks or SSD's into a single logical drive for data protection through redundancy or for a pure speed increase. RAID also offers ALL functions of AHCI, and in general enabling RAID mode in the BIOS is a safe setting to provide the most options for your controller and any potential expansions you may make.

 SMART Self Test Self-Monitoring, Analysis and Reporting Technology On/Off SMART is a technology for predicting imminent failures of a HDD/SSD. This does not guarantee that a drive will fail, or it not alerting does not mean there is no possibility of failure. SMART has several internal tests it runs, and when the drive deviates from set parameters a SMART alert is given to let you know of a POTENTIAL problem.

Serial ATA Port 0-5, all 6 ports will have the same information:

Empty	
Enabled	
OCZ-VERTEX3	(120.0GB)
Enabled	

Top line will identify what, if anything is attached to the port, if nothing is attached, it will show empty.

The pull-down menu is for Hot-Swap capability, and it is an enable/disable. This is recommended if you are using a drive rack of some sort.

USB Configuration	
1 Drive, 1 Keyboard, 1 Mouse, 2 Hubs	
Legacy USB Support	Enabled
XHCI Mode	Smart Auto
USB Per-Port Setting	
USB Port 1	ON
USB Port 2	ON
USB Port 3	ON)
JSB Port 4	ON)
JSB HDR Port 1	ON)
JSB HDR Port 2	ON
JSB3.0 Port 1	ON)
JSB3.0 Port 2	ON)
JSB3.0 Port 3	ON
JSB3.0 Port 4	ON
JSB3.0 HDR Port 1	ON)
USB3.0 HDR Port 2	ON ON

1 Drive, 1 Keyboard, 1 Mouse, 2 Hubs

This identifies all currently attached USB devices. These are fairly generic descriptions; USB thumb drives can often be labeled the same as USB HDD's as just "Drive". Also, many Keyboards

with a USB header on them will show up as a hub or hubs, macro pads and console controllers will typically detect as keyboard AND mouse devices both, so please bear in mind that this is not a literal list with hardware ID's.

• Legacy USB Support

Legacy USB Support	Enabled	
	Enabled	
	Disabled	

Enable/Disable

If this is disabled it will only support EFI compliant USB devices.

• XHCI Mode

eXtensible Host Controller Interface

XHCI Mode	Smart Auto 🔉 🔝
	Smart Auto
10-17-17-1-	Enabled
	Disabled

Smart Auto/Enabled/Disabled

The most current mode for USB with several new features for functionality and power saving. The XHCI architecture was designed to support all USB speeds, including SuperSpeed (5 Gbit/s) and future speeds, under a single driver stack.

USB Per-Port Setting	
USB Port 1	ON)
USB Port 2	ON IN
USB Port 3	ON I
USB Port 4	ON)

On/Off options for the rear I/O panel USB 2.0 ports.

USB	HDR Po	ort :	l	ON ON
USB	HDR PO	ort 2	2	ON

On/Off options for the internal front panel USB 2.0 Header

USB3.0 Port 1	ON)
USB3.0 Port 2	ON)
USB3.0 Port 3	ON)
USB3.0 Port 4	ON)

On/Off options for the rear I/O panel USB 3.0 ports.

USB3.0 HDR Port 1	ON
USB3.0 HDR Port 2	ON

On/Off options for the internal front panel USB 3.0 Header

🖉 Onboard Device Configuration		
u Intel LAN 1	Enabled	
Intel LAN 2	Enabled	
Wake on LAN	Enabled	
Mini PCIE/mSATA Slot	Enabled	
Mini PCIE Switch	Mini PCIE	
Speed	Auto	
Marvell SATA	Enabled	
Marvell Controller Mode	AHCI	
Azalia	Enabled	

- Intel LAN 1
 Intel i210 LAN
 Enable/Disable
- Intel LAN 2
 Intel i217 LAN
 Enable/Disable
 - Wake on LAN
 Enable/Disable
 This allows the PC to be powered on remotely via LAN
- Mini PCIE/mSATA Slot Enable/Disable This is the control setting for the Mini PCIE/mSATA slot on the motherboard.

• Mini PCIE Switch

Mini PCIE Switch	Mini PCIE 💊 🗾
	mSATA
	Mini PCIE

mSATA/Mini PCIE

This is the selector for what mode the small form factor slot runs on, either mSATA or Mini PCIE

o Speed

Speed	Auto 📡 🔟
next -	Auto
	Gen1
	Gen2

Auto/Gen1/Gen2

Mode/Speed selection for the mSATA/Mini PCIE slot.

Auto - Allows the slot to auto-detect the device and select the appropriate mode

Gen1 – Forces the slot to run in Gen1 mode.

Gen2 – Forces the slot to run in Gen2 mode.

Marvell SATA

Enable/Disable

This enables/disables the secondary SATA controller (not PCH native)

• Marvell Controller Mode

AHCI/RAID

AHCI – Advanced Host Controller Interface.

This setting offers features such as NCQ (Native Command Queuing) and Hotswap. Also required for an SSD to operate to its capabilities (RAID will also work for this).

RAID – Redundant Array if Inexpensive Disks

RAID is a means of combining multiple physical hard disks or SSD's into a single logical drive for data protection through redundancy or for a pure speed increase. RAID also offers ALL functions of AHCI, and in general enabling RAID mode in the BIOS is a safe setting to provide the most options for your controller and any potential expansions you may make.

Azalia

Enable/Disable

This enables or disables the integrated audio controller.

- Power Management

 Power Management

 Dark Mode

 ERP Mode

 ACPI Sleep State

 Restore AC Power Loss

 +12V PCIE Power Source
- Dark Mode

On/Off

This will allow all of the lights, LEDs, Indicators, etc, to be disabled making the board completely dark.

ERP Mode

Energy Related Products On/Off European Union standardization for energy and energy savings.

ACPI Sleep State

S3 only (Suspend to RAM)/Suspend disabled

Option to disable sleep altogether or enable only S3 sleep state.

• Restore AC Power Loss

Restore AC Power Loss	Last State
	Power Off
	Power On
	Last State

These are the options in the event the motherboard detects an inbound AC power loss

Power Off – This will leave the system powered off until turned back on by the user

Power On – When power is restored the PC will restart normally

Last State – Will default to whatever state the PC was last in during the loss to AC power

• +12v PCIE Power Source

+12V PCIE Power Source	24 Pin
	24 Pin
	6 Pin

This is the selector for additional inbound power for the PCIE slots.

24 pin – This selection will pull all motherboard originated power through the 24 pin slot

6 pin – This selection will utilize the 6 pin supplemental connector on the lower left edge of the motherboard

▶ H/W Monitor Configuration			
🔏 H/W Monitor Configuration			
🗳 CPU Die Temperature		41/39/35/39 C	
CPU Temperature		45 C	
PWM Temperature		32 C	
SYS Temperature		34 C	
CPU Fan.	2702 RPM		00
CPU Smart Fan Setting			
CPU Fan2	N/A	SMART	00
CPU Smart Fan2 Setting			
CHA Fan	N/A	SMART	00
CHA Smart Fan Setting			
SYS Fan1	N/A	MAX	00
SYS Fan2	N/A	MAX	00
PWR Fan	N/A	MAX	00
AUX Fan	N/A	MAX	00
CPU VIN	1.773 V	Auto	00
DIMM Voltage	1.493 V	Auto	00
PCH 1.05V	1.040 V	Auto	80
PCH 1.5V	1.528 V	Auto	00
VSM VTT	0.760 V		
+12V	11.962 V		
VCC	4.961 V		
VCC3	3.248 V		
3VSB	3.376 V		
IA Core 1 Voltage	1.013 V		
IA Core 2 Voltage	1.013 V		
IA Core 3 Voltage	1.013 V		Y
IA Core 4 Voltage	1.013 V		
IO Voltage	1.007 V		
GT Voltage	0.000 V		
Ring Voltage	1.067 V		
VSA Voltage	0.800 V		

This top section is strictly live monitoring.

<pre>// H/W Monitor Configuration</pre>	
CPU Die Temperature	41/39/35/39 C
CPU Temperature	45 C
PWM Temperature	32 C
SYS Temperature	34 C

CPU Die Temperature – This will list the temps for each specific core

CPU Temperature – This is the socket temp

PWM Temperature - This is the temperature of the PWM MOSFET's

SYS Temperature – This is ambient case temp derived from an onboard thermal sensor.

The section below is for fan controls.

CPU Fan	2702 RPM	SMART	60
CPU Smart Fan Setting			
CPU Fan2	N/A	SMART	00
CPU Smart Fan2 Setting			
CHA Fan	N/A	SMART	00
CHA Smart Fan Setting			
SYS Fan1	N/A	MAX	00
SYS Fan2	NZA	MAX	00
PWR Fan	N/A	MAX	00
AUX Fan	N/A	MAX	00

ALL FAN HEADERS ON THIS MOTHERBOARD HAVE A MAXIMUM POWER LIMIT OF 1 AMP @ 12 VOLTS, OR 12 WATTS, ANY MORE THAN THIS WILL LIKELY DAMAGE THE BOARD AND CAUSE PERMANENT FAILURE OF THE FAN HEADER. IF YOU NEED TO RUN A HIGH CAPACITY FAN, OR A PUMP THAT PULLS MORE THAN 1 AMP/12 WATTS, PLEASE USE A MOLEX CONNECTER FROM YOUR POWER SUPPLY, OR IF CONTROLLING THIS DEVICE IS NECESSARY, PLEASE LOOK TO A FAN CONTROLLER.

- CPU Fan This is a PWM controlled fan, you can either set a static value through PWM, or you can leave it in "Smart" mode where it will auto adjust based on detected temps.
- CPU Fan2 This is a PWM controlled fan, you can either set a static value through PWM, or you can leave it in "Smart" mode where it will auto adjust based on detected temps. This is labeled as CPU Fan2 as it used the same temp detection as "CPU Fan" so it will ramp up and down in unison with the primary CPU fan. This can be very useful when running your heatsink fans in a push/Pull mode.

- CHA Fan This is a chassis fan that is controlled via PWM
- All following fans, SYS Fan 1&2, PWR Fan and AUX Fan are all controlled by adjusting voltage input, not through PWM.

The section below handles Voltage adjustments

CPU VIN	1.773 V	Auto	00
DIMM Voltage	1.493 V	Auto	00
PCH 1.05V	1.040 V	Auto	00
PCH 1.5V	1.528 V	Auto	00

CPU VIN CPU Voltage Input (1.500v – 3.050v) This is the only CPU VRM located on the motherboards PCB that is not controlled by the FIVR

- DIMM Voltage (1.200v 2.300v) This is the voltage control for your memory, it is recommended to start by setting this voltage to match the voltage stated on the label of your memory.
- PCH 1.05V (0.700v 1.600v)
 Platform Controller Hub
 PCH serves as a south bridge for modern Intel Chipsets
 1.1v is the base voltage core for the PCH core domain.
- PCH 1.5V (0.700v 1.600v)
 Platform Controller Hub
 PCH serves as a south bridge for modern Intel Chipsets
 1.5v adjustments control the voltage for the PCH I/O and the IVR (Input Voltage Range).

The final section below is just a voltage monitor, this can be watched to see the specific voltages of those components listed, none of the values are adjustable here, and this is strictly for monitoring purposes.

GPU Link Configuration		
🖉 GPU 1 Link Setting		
💁 GPU 1 Vgpu Voltage	Auto 💊	00
GPU 1 Vmem Voltage	Auto	00
GPU 1 Vaux Voltage	Auto	00
GPU 1 VRM Setting	Normal	
GPU 2 Link Setting		
GPU 2 Vgpu Voltage	Auto	00
GPU 2 Vmem Voltage	Auto	00
GPU 2 Vaux Voltage	Auto	00
GPU 2 VRM Setting	Normal	
GPU 3 Link Setting		
GPU 3 Vgpu Voltage	Auto	00
GPU 3 Vmem Voltage	Auto	00
GPU 3 Vaux Voltage	Auto	00
GPU 3 VRM Setting	Normal	
GPU 4 Link Setting		
GPU 4 Vgpu Voltage	Auto	00
GPU 4 Vmem Voltage	Auto	00
GPU 4 Vaux Voltage	Auto	00
GPU 4 VRM Setting	Normal	

GPU Link requires using video card(s) that support GPU link and connecting it to the motherboard, and this will allow you to push voltages above and beyond what is changeable through Precision, however this is ONLY accessible through the BIOS at this time.

There are 4 GPU link settings, all options and ranges are identical, this is strictly for adjusting up to 4 video cards individually.

GPU 1 Link Setting		
GPU 1 Vgpu Voltage	Auto	00
GPU 1 Vmem Voltage	Auto	00
GPU 1 Vaux Voltage	Auto	00
GPU 1 VRM Setting	Normal	

- GPU 1 Vgpu Voltage
 Voltage range is 1.000v 2.000v
 This is an adjustment for the GPU core itself
- GPU 1 Vmem Voltage
 Voltage range is 1.000v 2.500v
 This is the adjustment for the RAM on the video card

- GPU 1 Vaux Voltage
 Voltage range is 0.700v 1.500v
 This is adjustment for PEX/PLL voltage on the video card.
- GPU 1 VRM Setting

GPU 1 VRM Setting	Normal 🍾 🔝
	Normal
	OCP Disabled
	LN2

Normal – Leave all BIOS settings on the card at reference.

OCP Disabled – This disables OCP to assist with voltage increase that come with doing heavy overclocking on VGA.

LN2 – This has several tweaks to the BIOS that are specific for running VGA at sub-zero temperatures.

Boot

UEFI				
VERCLOCK	MEMORY	ADVANCED	() воот	SAVE & EXIT
System Date		Tue 05/06/2014		
System Time			08:47:14	
Bootup NumLock State			ON	
Speaker Beep			ON	
Quiet Boot			ON	
Fast Boot			ON)	
Set Boot Priority				
1st Boot			CD/DVD	
2nd Boot			Hard Di	sk: OCZ-VERTEX 🚺
3rd Boot			USB Flo	ippy 🔽
4th Boot			USB CD/	'DVD 🔽
5th Boot			USB Har	dDisk 🗾
6th Boot			USB KEY	′:Patriot Memo 🚺
7th Boot			Network	. III.
8th Boot			UEFI: (FAT)Patriot 🚺
CSM Configuration				
Security				
Hard Disk Drive BBS	Priorities			
USB KEY Drive BBS Pr	iorities			
UEFI Boot Drive BBS	Priorities			

Bootup NumLock State

On/Off

This sets the NumLock on your keyboard to on or off when powered on; this allows the use of the number function on the 10 key pad on the keyboard.

• Speaker Beep

On/Off

Toggles the POST beep On or Off.

- Quiet Boot
 - On/Off

This enables or disables the splash screen during post.

- Fast Boot
 - On/Off

Enabling Fast boot will make the initial post/boot slightly faster by bypassing the boot device check and using last boot HDD.

Set Boot Priority	
1st Boot	CD/DVD
2nd Boot	Hard Disk: OCZ-VERTEX 🔽
3rd Boot	USB Floppy
4th Boot	USB CD/DVD
5th Boot	USB Hard Disk
6th Boot	USB KEY: Patriot Memo 🔽
7th Boot	Network.
8th Boot	UEFI: (FAT)Patriot 🔽

All boot options will share the same list of devices to boot from. Use the pull down menu and select the device you wish to use for 1st through 8th and when the system posts, it will follow this list.

CD/DVD Hard Disk: OC2-VERTEX3 USB Floppy USB CD/DVD USB Hard Disk USB KEY: Patriot Memory Network UEFI: (FAT) Patriot Me Disabled

CSM Configuration CSM Configuration Launch CSM Boot option filter Launch PXE OpROM policy Launch Storage OpROM policy Launch Video OpROM policy Legacy only Legacy only UEFI OpROM Uther PCI device ROM priority

Launch CSM

Enable/Disable

CSM translates the information generated under the EFI environment into the information required by the legacy environment and makes the legacy BIOS services available for booting to the operating system and for use in runtime.

Boot option filter

Allows you to select which boot methodology you wish to use, as you can setup a HDD/SSD to boot in UEFI mode rather than legacy.

• Launch PXE OpRom policy

Defines when the PXE can be launched.

• Launch Storage OpRom policy

• Launch Video OpRom policy

Selects when the video OpRom is initialized

• Other PCI device ROM priority

Do not launch		V
Do not launch	1	
UEFI only		
Legacy only		

Some PCIE devices have encryption. It will use the OpROM to check some data.

> Security

$\langle\!\!\langle$	Password Description	
	If ONLY the Administrator's password is set,	
	then this only limits access to Setup and is	
	only asked for when entering Setup.	
	If ONLY the User's password is set, then this	
	is a power on password and must be entered to	
	boot or enter Setup. In Setup the User will	
	have Administrator rights.	
	The password length must be	
	in the following range:	
	Minimum length	3
	Maximum length	20
	Administrator Password	
	User Password	

- Administrator Password
 3-20 characters
 This limits the access to the BIOS.
- User Password
 3-20 characters
 Password will lock the system and will not allow it to boot or enter setup without a password.

If you have more than one hard drive installed on your PC, this pulldown will show all attached devices. The drive selected here will be the drive represented in the boot order options on page 32.

If you have more than one USB drive installed on your PC, this pulldown will show all attached devices. The drive selected here will be the drive represented in the boot order options on page 32.

VEFI Boot Drive BBS Priorities

 UEFI Boot Drive BBS Priorities

 1st Boot

UEFI: (FAT) Patriot

If you have more than one USB drive installed on your PC, this pulldown will show all attached devices. The drive selected here will be the drive represented in the boot order options on page 32.

Save and Exit

UEFI				
Vercloo		ADVANCED	0 воот	SAVE & EXIT
Save Changes a	nd Reset			
Discard Change	s and Reset			
Postona Dofaul	+0			
Restore Deraul	lts.			
Boot Override				
Patriot Memor	Y PMAP			
UEFI: (FAT) P	atriot Memory PMAF			
P5: OCZ-VERTEX	3			
Setup Profile				
Save Profile				
Load Profile				
BIOS Firmware	Update			
Select BIOS Fi	le			

- Save Changes and Reset This will save whatever changes you have made in the BIOS and reboot the PC.
- Discard Changes and Reset This will not save any changes made and regress the settings to the state they were in when you entered the BIOS initially.
- Restore Defaults Resets BIOS to factory defaults
- Boot Override This is the selected main boot device
- Save Profile This option saves current BIOS configuration to a profile in BIOS.
- Load Profile This option loads current BIOS configuration from a saves profile in BIOS.
- Select BIOS file This allows you to select a .bin file from a thumb drive to flash BIOS from within BIOS.